Abstract

Cerebral arteriovenous malformations (AVMs) present a common yet complex clinical challenge, through 'steal' phenomena, haemorrhage risks and epilepsy effects, aspects which are little understood even for individual lesions. The main difficulty lies in understanding the detailed haemodynamics of AVMs and especially the enhanced through-flow associated with steal. Mathematically, as a basic step, the paper investigates a nonlinear inviscid model for the planar incompressible flow of fluid through a branched geometry consisting of a single feeding mother tube which splits into two or more non-aligned daughter tubes. Recurrence relations between the unknown flow profiles in the daughter tubes and the incoming rotational flow profile in the mother tube are derived, analysed, and solved in detail in order to find the total flow rate. The results show greatly enhanced through-flow arising, for a fixed value of the total downstream flow area, either from non-unique solutions to the problem or more particularly from an increase in the number of daughter tubes, or from both, depending on the distribution of pressure differences applied across the branching region and the total downstream flow area. Extensions of the basic flow model are noted, along with comparisons with recent direct numerical simulations and discussion of possible repercussions in the context of treatment and clinical observations of enhanced through-flows in AVMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.