Abstract

Intensity inhomogeneity and noise are two common issues in images but inevitably lead to significant challenges for image segmentation and is particularly pronounced when the two issues simultaneously appear in one image. As a result, most existing level set models yield poor performance when applied to this images. To this end, this paper proposes a novel hybrid level set model, named adaptive variational level set model (AVLSM) by integrating an adaptive scale bias field correction term and a denoising term into one level set framework, which can simultaneously correct the severe inhomogeneous intensity and denoise in segmentation. Specifically, an adaptive scale bias field correction term is first defined to correct the severe inhomogeneous intensity by adaptively adjusting the scale according to the degree of intensity inhomogeneity while segmentation. More importantly, the proposed adaptive scale truncation function in the term is model-agnostic, which can be applied to most off-the-shelf models and improves their performance for image segmentation with severe intensity inhomogeneity. Then, a denoising energy term is constructed based on the variational model, which can remove not only common additive noise but also multiplicative noise often occurred in medical image during segmentation. Finally, by integrating the two proposed energy terms into a variational level set framework, the AVLSM is proposed. The experimental results on synthetic and real images demonstrate the superiority of AVLSM over most state-of-the-art level set models in terms of accuracy, robustness and running time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call