Abstract

The challenges and benefits of utilizing avionics architecture concepts for the next generation of space launch vehicles are examined. The generic integration approach and architecture produced by the Advanced System Avionics (ASA)-Pave Pillar program is the foundation for avionics development in next generation aircraft for the US Department of Defense, and include aircraft such as the USAF advanced tactical fighter (AFTF) and USN advanced tactical aircraft (ATA). The implementation strategies being used by aircraft avionics include the system-wide utilization of common modular building blocks using advanced microelectronics such as VHSIC, standard electronic module (SEM) sizes and integrated racks, and interconnection networks using fiber optics. It is concluded that the Pave Pillar core architecture objectives of high availability, resiliency, supportability, and low life cycle cost are similar to the desired attributes of future space launch vehicles. The core avionics, with tailoring to those requirements, can be used as the design baseline for launch vehicles, and thereby utilize the experience and investment already committed to the advanced modular avionics architecture program. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call