Abstract

Weather forecasts are essential to aviation safety. Unreliable forecasts not only cause problems to pilots and air traffic controllers, but also lead to aviation accidents and incidents. To enhance the forecast accuracy, an integrated model comprising a convolutional neural network (CNN) and long short-term memory (LSTM) network is developed to achieve improved weather visibility forecasting. In this model, the CNN acts as the precursor of the LSTM network and classifies weather images to increase the visibility forecasting accuracy achieved with the LSTM network. For a dataset with 1500 weather images, the training, validation, and testing accuracy achieved with the integrated model is 100.00%, 97.33%, and 97.67%, respectively. On a numerical dataset of 10 weather features over 10 years, the RMSE and MAPE of an LSTM forecast can be reduced by multiple linear regression from RMSE 12.02 to 11.91 and 44.46% to 39.02%, respectively, and further by the Pearson’s correlation coefficients to 10.12 and 36.77%, respectively. By using CNN result as precursor to LSTM, the visibility forecast by integrating both can decrease the RMSE and MAPE to 2.68 and 13.41%, respectively. The integration by deep learning is shown an effective, accurate aviation weather forecast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call