Abstract

Abstract In order to solve the difficult problem of fault diagnosis in aviation equipment, this paper uses a biomimetic pattern recognition method. Compared to traditional pattern recognition, biomimetic pattern recognition is able to construct closed, complex geometries to cover all kinds of samples. Biomimetic pattern recognition is a “cognitive” approach, where the process between two similar things is considered asymptotic. It mathematically means that all similar samples in the feature space are continuously indistinguishable. The paper establishes a dual-weighted neural network model of an aircraft auxiliary power unit. Comparing the diagnostic process and results with traditional manual neural networks. The results show that biomimetic pattern recognition is a feasible and efficient diagnostic method for the fault diagnosis of aviation equipment. It provides a new way of thinking and method for the practical application of aviation equipment fault diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.