Abstract

BackgroundManagers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations.Methodology and Principal FindingsWe used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35–80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness.Conclusion and SignificanceOur results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations.

Highlights

  • Landscapes dedicated to timber commodity production are often managed for multiple objectives, including retention of populations and communities of native organisms, maintenance of ecosystem services, and the sustainable flow of commodities [1,2]

  • Species that rely on early seral conditions may be vulnerable, as their preferred habitat is reduced in quality and available for only short periods of time [11,12]

  • Population-level mean occupancy was positively associated with cover of both coniferous and hardwood vegetation (Figure 2). This result indicates that on average, occupancy probabilities across all species in this study tended to be higher in stands with greater percentages of conifer and hardwood cover

Read more

Summary

Introduction

Landscapes dedicated to timber commodity production are often managed for multiple objectives, including retention of populations and communities of native organisms, maintenance of ecosystem services, and the sustainable flow of commodities [1,2]. Intensive forest management practices typically include clearcutting, rapid regeneration of single-species conifer stands, and chemical control of competing vegetation, resulting in truncated successional stages [8]. Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. The degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call