Abstract

By the quail-chicken chimera technique, we studied, in culture, the inducing effect of sickle endoblast (derived from Rauber's sickle by centripetal and cranial migration) on the isolated Rauber's sickle-free central part of the area centralis or on the isolated Rauber's sickle-free anti-sickle region from unincubated chicken blastoderms. Just as Rauber's sickle, the flat one-cell-thick sickle endoblast (Stage 2-3, Hamburger & Hamilton, 1951) induces a primitive streak (PS) and a neural plate in the area centralis. If a vitelline membrane is interposed between the sickle endoblast and the area centralis, then a small primitive streak is still induced, suggesting the effect of a diffusible factor on PS formation. In the adjacent upper layer of an isolated anti-sickle region the apposed sickle endoblast induces only a (pre)neural plate. By contrast, this (pre)neural plate inducing effect is rapidly and totally suppressed after grafting on the anti-sickle region of whole unincubated blastoderms. This suggests dominating positional information phenomena emanating from Rauber's sickle over the whole blastoderm. After grafting sickle endoblast either on the isolated area centralis or on isolated anti-sickles, no junctional endoblast and no blood islands developed. This suggests that the differentiation of Rauber's sickle material into sickle endoblast is irreversible. Our results indicate that Rauber's sickle material under the form of sickle endoblast also influences early neurulation phenomena (at distance in space and time). The present study indicates the existence of a temporo-spatially bound cascade of gastrulation and neurulation phenomena and blood island formation in the avian blastoderm, starting from Rauber's sickle, the primary major organizer with inducing, inhibiting and dominating potencies. The latter not only plays a role by secretion of signalling molecules (positional information) but it also influences development by its cell lineages (junctional endoblast and sickle endoblast).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call