Abstract

The integration of multiple locomotion strategies and behaviors allows robots to extend the working environment and enhance the performance of each motion. This work integrates perching to a jumping robot to improve the jumping performance. The developed avian‐inspired perching device has a shock‐absorbing mechanism, which consist of a 3D printable flexible polymer material that absorbs the perching impact. This work characterizes the shock‐absorbing performance of the viscoelastic material as a function of hardness and thickness of the material, initial angles of a mechanism, mechanism length, perching speed, and perching angle. This work also characterizes the performance of mechanical interlocking and penetration as the engagement strategies for vertical surfaces. The performance of perching mechanism as a function of hardness of the target surface, contact angle of the claw, and performance of the shock absorption is observed. Finally, demonstrations to evaluate the perching mechanism's performance on the complete system are conducted, and the robot's performance enhancement with an integrated perching motion is shown. This work provides a design methodology to develop and integrate a perching mechanism into jumping robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.