Abstract
Several DNAs representing the genome of the avian acute leukemia virus OK 10 were isolated by molecular cloning from a transformed quail cell line, 9C, which contained at least six OK 10 proviruses. Recombinant lambda phages harboring the OK 10 genome and additional flanking cellular DNA sequences were studied by restriction endonuclease mapping and hybridization to viral cDNA probes. Six of the clones represented complete proviruses with similar, if not identical, viral sequences integrated at different positions in the host DNA. The organization of the OK 10 genome was determined by electron-microscopic analysis of heteroduplexes formed between the cloned OK 10 DNA and DNAs representing the c-myc gene and the genomes of two other avian retroviruses, Rous-associated virus-1 and MC29. The results indicated that the OK 10 proviral DNA is about 7.5 kilobases in size with the following structure: 5'-LTR-gag-delta polmyc-delta env-LTR-3', where LTR indicates a long terminal repeat. The oncogene of OK 10, v-mycOK 10, forms a continuous DNA segment of around 1.7 kilobases between pol and env. It is similar in structure and length to the v-myc gene of MC29, as demonstrated by restriction endonuclease and heteroduplex analyses. Two of the OK 10 proviruses were tested in transfection experiments: both DNAs gave rise to virus with the transforming capacities of OK 10 when Rous-associated virus-1 was used to provide helper virus functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.