Abstract
Understanding plant uptake and translocation of nanomaterials is crucial for ensuring the successful and sustainable applications of seed nanotreatment. Here, we collect a dataset with 280 instances from experiments for predicting the relative metal/metalloid concentration (RMC) in maize seedlings after seed priming by various metal and metalloid oxide nanoparticles. To obtain unbiased predictions and explanations on small datasets, we present an averaging strategy and add a dimension for interpretable machine learning. The findings in post-hoc interpretations of sophisticated LightGBM models demonstrate that solubility is highly correlated with model performance. Surface area, concentration, zeta potential, and hydrodynamic diameter of nanoparticles and seedling part and relative weight of plants are dominant factors affecting RMC, and their effects and interactions are explained. Furthermore, self-interpretable models using the RuleFit algorithm are established to successfully predict RMC only based on six important features identified by post-hoc explanations. We then develop a visualization tool called RuleGrid to depict feature effects and interactions in numerous generated rules. Consistent parameter-RMC relationships are obtained by different methods. This study offers a promising interpretable data-driven approach to expand the knowledge of nanoparticle fate in plants and may profoundly contribute to the safety-by-design of nanomaterials in agricultural and environmental applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Environmental Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.