Abstract

We prove the validity of averaging principles for two-time-scale neutral stochastic delay partial differential equations (NSDPDEs) driven by fractional Brownian motions (fBms) under two-time-scale formulation. Firstly, in the sense of mean-square convergence, we obtain not only the averaging principles for NSDPDEs involving two-time-scale Markov switching with a single weakly recurrent class but also for the case of two-time-scale Markov switching with multiple weakly irreducible classes. Secondly, averaging principles for NSDPDEs driven by fBms with random delay modulated by two-time-scale Markovian switching are established. We proved that there is a limit process in which the fast changing noise is averaged out. The limit process is substantially simpler than that of the original full fast–slow system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.