Abstract
We study the asymptotic behavior for an inhomogeneous multiscale stochastic dynamical system with non-smooth coefficients. Depending on the averaging regime and the homogenization regime, two strong convergences in the averaging principle of functional law of large numbers type are established. Then we consider the small fluctuations of the system around its average. Nine cases of functional central limit type theorems are obtained. In particular, even though the averaged equation for the original system is the same, the corresponding homogenization limit for the normal deviation can be quite different due to the difference in the interactions between the fast scales and the deviation scales. We provide quite intuitive explanations for each case. Furthermore, sharp rates both for the strong convergences and the functional central limit theorems are obtained, and these convergences are shown to rely only on the regularity of the coefficients of the system with respect to the slow variable, and do not depend on their regularity with respect to the fast variable, which coincide with the intuition since in the limit equations the fast component has been totally averaged or homogenized out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.