Abstract
The presence of artefacts due to Electron Spin Echo Envelope Modulation (ESEEM) complicates the analysis of dipolar evolution data in Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiments. Here we demonstrate that averaging over the two delay times in the refocused RIDME experiment allows for nearly quantitative removal of the ESEEM artefacts, resulting in potentially much better performance than the so far used methods. The analytical equations are presented and analyzed for the case of electron and nuclear spins S=1/2,I=1/2. The presented analysis is also relevant for Double Electron Electron Resonance (DEER) and Chirp-Induced Dipolar Modulation Enhancement (CIDME) techniques. The applicability of the ESEEM averaging approach is demonstrated on a Gd(III)-Gd(III) rigid ruler compound in deuterated frozen solution at Q band (35GHz).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.