Abstract
The purpose of this study was to design a keyhole pulse sequence for quantitative 2D dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) based on a spoiled gradient echo T1-weighted acquisition. Saturation recovery was applied to achieve a linear correlation between signal intensity and contrast agent concentration in an arterial input function (AIF) while simultaneously removing time-of-flight effect. To remove ghosting artifacts arising from incomplete presaturation, EXORCYCLE phase cycling with averaging was applied to the pulse sequence. RF spoiling by radiofrequency switching with the synthesizer can be combined with EXORCYCLE phase cycling. Images affected by the large difference in signal intensity before and after contrast agent administration with the keyhole technique were improved by interleaving of peripheral lines of k-space with groups of central lines. Both peripheral and central lines were renewed during the dynamic scan. AIFs were obtained from the rat abdominal aorta with this keyhole sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.