Abstract
The present study investigated how color information was summarized in multicolor mosaics. The mosaics were composed of small elements of 17 colors that roughly belonged to a single color category. We manipulated the degree of color variation around the mean by varying the proportion of different color elements. Observers matched the mean color of the multicolor mosaic by adjusting the color of a spatially uniform matching stimulus. Results showed that when the color variation was large, the matched color deviated from the colorimetric mean toward the most-saturated color, although the hue of the matched color was almost the same as that of the colorimetric mean. These findings together suggested differential processing of hue and saturation. The deviation of the matched color decreased, but did not disappear, when the color variation was reduced. The analysis of color metric underlying color averaging revealed differential color scaling in nearly orthogonal blue-orange and green-purple directions, implying that the visual system does not solely rely on linear cone-opponent codes when summarizing color signals. The deviation itself was consistently found regardless of different color metrics tested. The robustness of the deviation indicated an inherent bias of mean color judgments favoring highly saturated colors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Optical Society of America. A, Optics, image science, and vision
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.