Abstract

In this paper, the stability property of speed-sensorless induction motor drives with stator resistance estimation is analyzed using the averaging analysis technique. Explicit stability conditions are then derived to clarify analytically when the instability may occur and how the regressor vectors used in the estimation and the integral adaptation gains should be designed to assure stability. The derived stability conditions also reveal that the coupling between the speed and the stator resistance estimation loops is the main cause of instability and that stabilization of each individual estimation loop is necessary but insufficient to guarantee stability. Instead of the conventional regressor vectors that are shown to make the estimation unstable in some regenerative regions, two new regressor vectors are introduced to achieve stability for the whole operating conditions. Moreover, investigation of the persistently exciting (PE) conditions points out theoretically the loss of identifiability of the rotor speed and the stator resistance at no loads and at zero frequency operations. Validity of all the analytical results is verified by simulation and experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call