Abstract
We introduce a time-optimal control theory in the space ℳ+ (ℝd) of positive and finite Borel measures. We prove some natural results, such as a dynamic programming principle, the existence of optimal trajectories, regularity results and an HJB equation for the value function in this infinite-dimensional setting. The main tool used is the superposition principle (by Ambrosio–Gigli–Savaré) which allows to represent the trajectory in the space of measures as weighted superposition of classical characteristic curves in ℝd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.