Abstract

The need for configurational sampling dramatically increases the cost of combined quantum mechanics/molecular mechanics (QM/MM) simulations of chemical processes in solution. We developed an averaged condensed phase environment (ACPE) model that constructs an effective polarizable environment directly from explicitly sampled molecular dynamics configurations via the K-means++ algorithm and a mathematically rigorous translation of the molecular mechanics parameters. The model captures detailed heterogeneous features in the environment that may be difficult to describe using a conventional polarizable continuum model. Instead of performing repeated QM/MM calculations for each new configuration of the environment, the ACPE approach allows one to perform a single QM calculation on an averaged configuration. Here, we demonstrate the model by computing electronic excitation energies for several small molecules in solution. The ACPE model predicts the excitation energies in excellent agreement with conventional configurational averaging yet with orders of magnitude of reduction in the computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.