Abstract

Recently, the user-side fairness issue in Collaborative Filtering (CF) algorithms has gained considerable attention, arguing that results should not discriminate an individual or a sub user group based on users’ sensitive attributes (e.g., gender). Researchers have proposed fairness-aware CF models by decreasing statistical associations between predictions and sensitive attributes. A more natural idea is to achieve model fairness from a causal perspective. The remaining challenge is that we have no access to interventions, i.e., the counterfactual world that produces recommendations when each user have changed the sensitive attribute value. To this end, we first borrow the Rubin-Neyman potential outcome framework to define average causal effects of sensitive attributes. Then, we show that removing causal effects of sensitive attributes is equal to average counterfactual fairness in CF. Then, we use the propensity re-weighting paradigm to estimate the average causal effects of sensitive attributes and formulate the estimated causal effects as an additional regularization term. To the best of our knowledge, we are one of the first few attempts to achieve counterfactual fairness from the causal effect estimation perspective in CF, which frees us from building sophisticated causal graph. Finally, experiments on three real-world datasets show the superiority of our proposed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call