Abstract

The intelligent reflecting surface (IRS) and angle diversity receiver (ADR) jointly assisted indoor visible light communication (VLC) system is proposed to improve average signal-to-noise ratio (ASNR) performance. Specifically, to maximize the ASNR at the receiving plane, the roll angle and yaw angle of IRS and the inclination angle of the side detector in the ADR structure are optimized simultaneously as one non-convex problem. With the bat algorithm, the optimal solution is numerically obtained. Results show that when the transmit power of the light emitting diode lamp array is 1W, the ASNRs of this VLC system optimized by IRS and ADR are approximately 7.89dB, 3.58dB, and 2.09dB higher than those of the original, IRS-assisted, and ADR-assisted VLC systems, respectively. Furthermore, the transmission rate and bit error rate performances of the original, IRS-assisted, ADR-assisted, and IRS and ADR jointly assisted indoor VLC systems are also simulated and compared; it is found that the performance improvement of the indoor VLC system jointly optimized by IRS and ADR is more evident than that of the other three VLC systems. This study will benefit the research and development of indoor VLC systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.