Abstract

In this paper we use Monte Carlo Simulation methodology to compare the effectiveness of five multivariate quality control methods, namely Hotelling T 2, Multivariate Shewhart Char, Discriminant Analysis, Decomposition Method, and Multivariate Ridge Residual Chart-developed by Authors-, for controlling the mean vector in a multivariate process. P-dimensional multivariate normal data generated using different covariance structures. Various amount of shift in the mean vector is induced and the resulting Average Run Length (ARL) is computed. The effectiveness of each method with regard to ARL is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.