Abstract

In this paper, we study the average optimality for continuous-time controlled jump Markov processes in general state and action spaces. The criterion to be minimized is the average expected costs. Both the transition rates and the cost rates are allowed to be unbounded. We propose another set of conditions under which we first establish one average optimality inequality by using the well-known “vanishing discounting factor approach”. Then, when the cost (or reward) rates are nonnegative (or nonpositive), from the average optimality inequality we prove the existence of an average optimal stationary policy in all randomized history dependent policies by using the Dynkin formula and the Tauberian theorem. Finally, when the cost (or reward) rates have neither upper nor lower bounds, we also prove the existence of an average optimal policy in all (deterministic) stationary policies by constructing a “new” cost (or reward) rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.