Abstract

AbstractUnderstanding the influence of population attributes on genetic diversity is important to advancement of biological conservation. Because bighorn sheep (Ovis canadensis) populations vary in size and management history, the species provides a unique opportunity to observe the response of average pairwise kinship, inversely related to genetic diversity, to a spectrum of natural and management influences. We estimated average pairwise kinship of bighorn sheep herds and compared estimates with population origin (native/indigenous/extant or reintroduced), historical minimum count, connectivity, and augmentation history, to determine which predictors were the most important. We evaluated 488 bighorn sheep from 19 wild populations with past minimum counts of 16–562 animals, including native and reintroduced populations that received 0–165 animals in augmentations. Using the Illumina High Density Ovine array, we generated a dataset of 7728 single nucleotide polymorphisms and calculated average pairwise kinship for each population. Multiple linear regression analysis determined that connectivity between populations via dispersal, greater number of animals received in augmentations, and greater minimum count were correlated with lower average pairwise kinship at the population level, and whether the population was extant or reintroduced was less important. Thus, our results indicated that genetic isolation of populations can result in increased levels of inbreeding. By determining that natural and human‐assisted gene flow were likely the most important influences of average pairwise kinship at the population level, this study can serve as a benchmark for future management of bighorn sheep populations and aid in identifying populations of genetic concern to define priorities for conservation of wild populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.