Abstract

Analytical formula for the average intensity of cylindrical vector vortex beams propagation in a non-Kolmogorov turbulent atmosphere is derived based on extended Huygens-Fresnel diffraction integral and be used to explore the evolution of the turbulence-induced spreading. For comparison, the corresponding results of the scalar vortex beams are compiled together. Scalar vortex beam can keep its original intensity pattern in the short propagation distance and evolve into the Gaussian-like beam with the increase of the propagation distance and turbulence structure parameter, and the decrease of power spectrum index, under the influence of atmospheric turbulence. An example illustrates the fact that, radially polarized vortex beams are more resistant to atmospheric turbulence than scalar vortex beams based on the view of disappearing characteristic of hollow structure. A radially polarized vortex beam has a better performance on the reduction of turbulence-induced beam spreading effects than its scalar counterpart. This indicates the potential advantages of using vector vortex to mitigate atmospheric effects and enable a more robust free space communication channel with longer link distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call