Abstract

The average friction factor in micro tubes will help the design engineers to estimate the pressure loss in micro flow devices. The aim of the present study is to obtain numerically average Darcy and Fanning friction factors and Mach numbers between the inlet and outlet of gas flows through adiabatic microtubes. This paper presents the average Poiseuille numbers, (fd.Re)ave & (ff.Re)ave, between the inlet and outlet, those are obtained from numerical results for laminar gas flow in microtubes with diameters of 50, 100 and 150 μm and aspect ratios (i.e. length/diameter) of 100, 200 and 400, respectively. Axis-symmetric compressible momentum and energy equations were solved with the Arbitrary-Lagrangian-Eulerian (ALE) method. The stagnation pressure was chosen in such a way that the outlet Mach number ranged from 0.1 to 1.0. The outlet pressure was fixed at atmospheric condition. As a result, the average Darcy and Fanning friction factors between the inlet and outlet were obtained and compared with Moody’s chart. The (fd.Re)ave and (ff.Re)ave were also obtained and presented as a function of average Mach number and were compared with the local f.Re correlations proposed in the previous study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.