Abstract
Two-dimensional dry foams coarsen according to the von Neumann law as dA/dt ∝ (n − 6) where n is the number of sides of a bubble with area A. Such foams reach a self-similar scaling state where area and side-number distributions are stationary. Combining self-similarity with the von Neumann law, we derive time derivatives of moments of the bubble area distribution and a relation connecting area moments with averages of the side-number distribution that are weighted by powers of bubble area. To test these predictions, we collect and analyze high precision image data for a large number of bubbles squashed between parallel acrylic plates and allowed to coarsen into the self-similar scaling state. We find good agreement for moments ranging from 2–20.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.