Abstract

Semi-Markov decision processes underlie the control of many queueing systems. In this paper, we deal with infinite state semi-Markov decision processes with nonnegative, unbounded costs and finite action sets. Axioms for the existence of an expected average cost optimal stationary policy are presented. These conditions generalize the work in Sennott [22] for Markov decision processes. Verifiable conditions for the axioms to hold are obtained. The theory is applied to control of the M/G/l queue with variable service parameter, with on-off server, and with batch processing, and to control of the G/M/m queue with variable arrival parameter and customer rejection. It is applied to a timesharing network of queues with a single server and finally to optimal routing of Poisson arrivals to parallel exponential servers. The final section extends the existence result to compact action spaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call