Abstract
We consider a hydrodynamic model of a quantum dusty plasma. We prove mathematically that the resulting dust ion-acoustic plasma waves present the property of being conservative on average. Furthermore, we test this property numerically, confirming its validity. Using standard techniques from the study of dynamical systems, as, for example, the Lyapunov characteristic exponents, we investigate the chaotic dynamics of the plasma and show numerically its existence for a wide range of parameter values. Finally, we illustrate how chaotic dynamics organizes in the parameter space for fixed values of the initial conditions, as the Mach number and the quantum diffraction parameter are continuously varied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.