Abstract

In this paper, we consider the average-consensus problem with communication time delays and noisy links. We analyze two different cases of coupling topologies: fixed and switching topologies. By utilizing the stability theory of the stochastic differential equations, we analytically show that the average consensus could be achieved almost surely with the perturbation of noise and the communication time delays even if the time delay is time-varying. The theoretical results show that multi-agent systems can tolerate relatively large time delays if the noise is weak, and they can tolerate relatively strong noise if the time delays are low. The simulation results show that systems with strong noise intensities yield slow convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.