Abstract

Effects of shear rates on average cluster sizes (ACSs) and cluster size distributions (CSDs) in uni- and bi-systems of partly charged superfine nickel particles were investigated by Brownian dynamics, and clustering properties in these systems were compared with those in non-polar systems. The results show that the ACSs in bi-polar systems are larger than those in the non-polar systems. In uni-polar systems the behavior of clustering property differs: at the lower ionic concentration (10%), repulsive force is not strong enough to break clusters, but may greatly weaken them. The clusters are eventually cracked into smaller ones only when concentration of uni-polar charged particles is large enough. In this work, the ionic concentration is 20%. The relationship between ACS and shear rates follows power law in a exponent range of 0.176–0.276. This range is in a good agreement with the range of experimental data, but it is biased towards the lower limit slightly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.