Abstract

Data from the Millstone Hill incoherent scatter radar taken over two solar cycles (1979–2000) are examined to determine the average characteristics of the disturbance convection electric field in the midlatitude ionosphere. Radar azimuth scans provide a regular database of ionospheric plasma convection observations spanning auroral and subauroral latitudes, and these scans have been examined for all local times and activity conditions.We examine the occurrence and characteristics of a persistent secondary westward convection peak which lies equatorward of the auroral two‐cell convection. Individual scans and average patterns of plasma flow identify and characterize this latitudinally broad and persistent subauroral polarization stream (SAPS), which spans the nightside from dusk to the early morning sector for all Kp greater than 4. Premidnight, the SAPS westward convection lies equatorward of L = 4 (60° invariant latitude, Λ), spans 3°–5° of latitude, and has an average peak amplitude of >900 m/s. In the predawn sector, SAPS is seen as a region of antisunward convection equatorward of L = 3 (55° Λ), spanning ∼3° of latitude, with an average peak amplitude of 400 m/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.