Abstract

Calibration of satellite-borne radiometer is a key issue for quantitative remote sensing. Its accuracy depends on the stability of the calibration source. Because of no atmosphere and biological activity, the Moon surface keeps stable in the long term and may be a good candidate for thermal calibration. Observation of microwave humidity sounder (MHS) onboard the NOAA-18 made measurements of the disk-integrated brightness temperature (TB) of the Moon for the phase angle between -800 and 500. The measurement of NOAA-18 has been studied to validate the TB model of lunar surface. In this article, the near side of the Moon surface is divided into 900 subregions with a span of 60 x 60 in longitude and latitude. By solving 1-D heat conductive equation with the thermophysical parameters validated by the Diviner data of the Lunar Reconnaissance Orbiter (LRO), the temperature profiles of the regolith media in all 900 subregions are obtained. The loss tangents are inversed from the Chang'e-2 (CE-2) 37-GHz microwave TB data at noontime. Employing the fluctuation-dissipation theorem and the Wentzel-Kramer-Brillouin (WKB) approach, the microwave and millimeter-wave TBs of each subregion are simulated. Then, the weighted average TB can be disk-integrated from 900 TBs of all subregions versus the phase angle. These simulations well demonstrate diurnal TB variation and its dependence upon the frequency channels. It is found that the disk-integrated TB of the Moon in MHS channels is sensitive to the full-width at half-maximum (FWHM) of the deep space view (DSV), which is corrected in our simulation, where the Moon is now taken as an extended target, instead of a point-like object. Simulated integrated TBs are compared with the corrected MHS TB data at 89, 157, and 183 GHz. The simulated TB is well consistent with these MHS TB data at 89 and 183 GHz at various phase angles. But the maximum TB of MHS data at 157 GHz is unusually lower than that of 89 GHz. The influence of the loss tangent, emissivity, and the pointing error is analyzed. Some more careful design to observe the Moon TB and technical parameters, especially the FWHM should be well determined. Our model and numerical simulation provides a tool for TB calibration and validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.