Abstract

For all positive integers $$\ell $$ l , we prove non-trivial bounds for the $$\ell $$ l -torsion in the class group of K, which hold for almost all number fields K in certain families of cyclic extensions of arbitrarily large degree. In particular, such bounds hold for almost all cyclic degree-p-extensions of F, where F is an arbitrary number field and p is any prime for which F and the pth cyclotomic field are linearly disjoint. Along the way, we prove precise asymptotic counting results for the fields of bounded discriminant in our families with prescribed splitting behavior at finitely many primes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.