Abstract
A dual-hop status update system aided by energy-harvesting (EH) relays with finite data and energy buffers is studied in this work. To achieve timely status updates, the best relays should be selected to minimize the average age of information (AoI), which is a recently proposed metric to evaluate information freshness. The average AoI minimization can be formulated as a Markov decision process (MDP), but the state space for capturing channel and buffer evolution grows exponentially with the number of relays, leading to high solution complexity. We propose a relay selection (RS) scheme based on deep reinforcement learning (DRL) according to the instantaneous channel packet freshness and buffer information of each relay. Simulation results show a significant improvement of the proposed DRL-based RS scheme over state-of-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.