Abstract

AbstractThe influence of a dam on granular avalanches was investigated. Small-scale laboratory experiments were designed to study the effectiveness of dams built to protect against large-scale dense snow avalanches. These experiments consisted of releasing a granular mass that first flowed down an inclined channel, then hit and overflowed a dam spanning the channel exit and finally spread out on an inclined unconfined run-out zone. First, we measured the volume retained upstream of the obstacle and the overrun length downstream of the obstacle. In the avalanche regime studied here, no simple relation was found between the volume retained and the run-out shortening resulting from the obstacle. The results highlighted that the avalanche run-out was also shortened by complex local energy dissipation. Second, we report the study of the granular deposit propagating upstream of the dam. We show that there was a change in behaviour from an overflow-type regime for low dam heights to a bore regime for higher dam heights. Finally, we show that this change in behaviour directly influenced the local energy dissipation and the resulting avalanche run-out shortening downstream of the dam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.