Abstract

We investigate how the dimensionality of the embedding space affects the microscopic crackling dynamics and the macroscopic response of heterogeneous materials. Using a fiber bundle model with localized load sharing computer simulations are performed from 1 to 8 dimensions slowly increasing the external load up to failure. Analyzing the constitutive curve, fracture strength and avalanche statistics of bundles we demonstrate that a gradual crossover emerges from the universality class of localized behavior to the mean field class of fracture as the embedding dimension increases. The evolution between the two universality classes is described by an exponential functional form. Simulations revealed that the average temporal profile of crackling avalanches evolves with the dimensionality of the system from a strongly asymmetric shape to a symmetric parabola characteristic for localized stresses and homogeneous stress fields, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call