Abstract
AbstractDifferent configurations of gearbox, generator and power converter exist for offshore wind turbines. This paper investigated the performance of four prominent drive train configurations over a range of sites distinguished by their distance to shore. Failure rate data from onshore and offshore wind turbine populations was used where available or systematically estimated where no data was available. This was inputted along with repair resource requirements to an offshore accessibility and operation and maintenance model to calculate availability and operation and maintenance costs for a baseline wind farm consisting of 100 turbines. The results predicted that turbines with a permanent magnet generator and a fully rated power converter will have a higher availability and lower operation and maintenance costs than turbines with doubly fed induction generators. This held true for all sites in this analysis. It was also predicted that in turbines with a permanent magnet generator, the direct drive configuration has the highest availability and lowest operation and maintenance costs followed by the turbines with two‐stage and three‐stage gearboxes. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.