Abstract
To explore the space-filling growth of adherent mesenchymal stem cells (MSC) into tissue-like structures in vitro, human bone marrow derived MSC were exposed to fibronectin-coated, millimeter-sized, triangular channels casted in poly(dimethyl siloxane) carriers. The results revealed that the three dimensional (3D) growth of MSC differs in dependence on differentiation status and availability of extracellular matrix (ECM) proteins: Massive 3D structure formation was observed for MSC under pro-osteogenic stimulation but not for undifferentiated MSC nor for MSC under pro-adipogenic stimulation; boosting cellular matrix secretion and addition of soluble ECM proteins caused extensive 3D tissue formation of undifferentiated MSC. The reported findings may contribute to bridge the gap between in vitro and in vivo analyses and guide the application of MSC in tissue replacement approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.