Abstract

We studied how the Lo5 and T250 maize lines, characterized by high and low nitrogen use efficiency (NUE), respectively, modified the microbial biomass, enzymatic activities and microbial community structure in the rhizosphere after exposure to different N forms. The two maize lines were grown for 4 weeks in rhizoboxes allowing precise sampling of rhizosphere and bulk soil with no nutrient additions, and then exposed to with nitric-, ammonium- and urea-N. After N exposure, the plants were inserted back into their original rhizoboxes to allow the root exudates diffusion into the rhizosphere. After 24h rhizosphere soil were sampled and analyzed. Microbial biomass and soil enzymatic activities were increased after the exposure to different N forms of both maize lines. The plant exposure to different N forms also induced changes in the rhizosphere bacterial and fungal communities composition. Plant responses to the availability of different N forms was a dominant factor regulating activity and composition of the rhizosphere microbial communities, likely due to changes in the rhizodepositions. Therefore different N forms used for fertilization of agriculturally relevant plants such as maize can result in different plant mediated effects on the microbial activity and community structure in the rhizosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.