Abstract

A rapid and inexpensive incubation and extraction technique for estimating the available low molecular weight and potentially bioavailable fraction of Cs isotopes in vegetation has been developed. Samples of contaminated vegetation (grass, herbage and fungi) and litter were exposed to rumen liquid from sheep, by in vitro incubation or by placing nylon bags in the rumen of sheep (in sacco). The results were compared with laboratory extractions using rumen buffer, NH4OAc, CsCl and de-ionized water. The release of low molecular weight 137Cs species after in vitro incubation with rumen liquid for 4-8 h was 75-85% for grass, herbage and fungi, 30% for lichen and 10% for litter. The reproducibility of the method was 5% for digestible matrices and 10-20% for litter where the fraction of Cs isotopes released was small. Extractions with NH4OAc and CsCl released 75 and 80% of the Cs isotopes in grass, respectively. Significantly lower extraction yields were obtained with de-ionized water and buffer. During in sacco incubation, 90-100% of the Cs isotopes in vegetation was released within 1 h; however, potentially available low molecular weight forms and Cs-bearing colloidal material could not be differentiated. The results obtained by incubation with rumen liquid and by extraction with NH4OAc or CsCl were in good agreement with published data from a 3 week feeding trial. For practical reasons extraction with NH4OAc or CsCl rather than incubation with rumen liquid is recommended for estimating the fraction of available low molecular weight Cs species.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.