Abstract

PurposeThe main aim of this paper is to improve reliability characteristics namely availability, mean time to failure (MTTF), and expected profit of a complex system.Design/methodology/approachThe paper discusses the availability of a complex system, which consists of two independent repairable subsystems A and B in (1‐out‐of‐2: F) and (1‐out‐of‐n: F) arrangement respectively. Subsystem A has two identical units arranged in parallel redundancy (1‐out‐of‐2: G), subsystem B has n units in series (1‐out‐of‐n: F) with two types of failure, namely, partial and catastrophic. Except at two transitions where there are two types of repair namely exponential and general possible. The failure and repair time for both subsystems follow exponential and general distributions respectively. The model is analysed under “preemptive‐repeat repair discipline” where A is a priority and B is non‐priority.FindingsBy employing supplementary variable technique, Laplace transformation and Gumbel‐Hougaard family copula various transition state probabilities, availability, MTTF and cost analysis (expected profit) are obtained along with steady‐state behaviour of the system. Inversions have also been carried out so as to obtain time dependent probabilities, which determine availability of the system at any instant.Originality/valueThis paper, through a systematic view, presents a mathematical model of a complex system from which the reliability characteristics namely availability, MTTF, and expected profit of a complex system can be improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.