Abstract

AbstractIn cloud computing services, high availability is one of the quality of service requirements which is necessary to maintain customer confidence. High availability systems can be built by applying redundant nodes and multiple clusters in order to cope with software and hardware failures. Due to cloud computing complexity, dependability analysis of the cloud may require combining state‐based and nonstate‐based modeling techniques. This article proposes a hierarchical model combining reliability block diagrams and continuous time Markov chains to evaluate the availability of OpenStack private clouds, by considering different scenarios. The steady‐state availability, downtime, and cost are used as measures to compare different scenarios studied in the article. The heterogeneous workloads are considered in the proposed models by varying the number of CPUs requested by each customer. Both hardware and software failure rates of OpenStack components used in the model are collected via setting up a real OpenStack environment applying redundancy techniques. Results obtained from the proposed models emphasize the positive impact of redundancy on availability and downtime. Considering the tradeoff between availability and cost, system providers can choose an appropriate scenario for a specific purpose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.