Abstract
Background and purpose — External validation of machine learning (ML) prediction models is an essential step before clinical application. We assessed the proportion, performance, and transparent reporting of externally validated ML prediction models in orthopedic surgery, using the Transparent Reporting for Individual Prognosis or Diagnosis (TRIPOD) guidelines. Material and methods — We performed a systematic search using synonyms for every orthopedic specialty, ML, and external validation. The proportion was determined by using 59 ML prediction models with only internal validation in orthopedic surgical outcome published up until June 18, 2020, previously identified by our group. Model performance was evaluated using discrimination, calibration, and decision-curve analysis. The TRIPOD guidelines assessed transparent reporting. Results — We included 18 studies externally validating 10 different ML prediction models of the 59 available ML models after screening 4,682 studies. All external validations identified in this review retained good discrimination. Other key performance measures were provided in only 3 studies, rendering overall performance evaluation difficult. The overall median TRIPOD completeness was 61% (IQR 43–89), with 6 items being reported in less than 4/18 of the studies. Interpretation — Most current predictive ML models are not externally validated. The 18 available external validation studies were characterized by incomplete reporting of performance measures, limiting a transparent examination of model performance. Further prospective studies are needed to validate or refute the myriad of predictive ML models in orthopedics while adhering to existing guidelines. This ensures clinicians can take full advantage of validated and clinically implementable ML decision tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.