Abstract
PurposeThe purpose of this paper is to evaluate various reliability measures like availability, reliability, mean time to failure and profit function.Design/methodology/approachThe authors present a novel method for availability analysis of an engineering system incorporating waiting time to repair. The considered system consists of two subsystems, namely, A and B connected in series. The subsystem B has two identical units in standby arrangement. Each unit of the subsystem has two modes, i.e. normal efficiency or failed. The two standby units of the subsystem B are connected by an imperfect switching. The system is analyzed by supplementary variable technique, Laplace transformation and Gumbel-Hougaard family of copula.FindingsNumerical examples with a way to highlight the important results have been appended at last. Numerical calculation shows that availability and reliability of the system is decreasing with respect to time when failure rates are fixed at different values. Finally, cost analysis of system reveals that the expected profit decreases with increase in service cost.Originality/valueThis paper presents a mathematical model in which an important aspect of switching has been taken into consideration, which is consistent with actual failures of switching by assuming two different types of failure between adjacent transition. It is evaluated with the help of the Gumbel-Hougaard family of copula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Quality & Reliability Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.