Abstract

The present paper studies availability of four hybrid systems configured as series-parallel systems. Each system or configuration consisting of main units and their corresponding processors. Configuration I consist of three processors is a 2-out-of-3 unit connected to 2-out-of-3 processors, Configuration II is a 2-out-of-3 unit connected to 2-out-of-4 processors, Configuration III is a 2-out-of-4 unit connected to 2-out-of-4 processors while Configuration IV is a 2-out-of-4 unit connected to 2-out-of-3 processors. The failure and repair times of units and their processors are assumed to be exponentially distributed. Explicit expressions for steady state availability are developed for each system using first order linear differential difference equations and validated by performing numerical experiments. Analysis of the effect of various system parameters on availability was performed. Graphical illustrations are given to highlight important results. The systems are ranked based on their availability and found that Configuration IV is better. Sensitivity analysis on the model’s outcomes are performed using partial rank correlation coefficients (PRCC) to determine the most critical parameters leading to increase (decrease) in the value of availability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call