Abstract

The preparation of Au/ZnO and Au/Fe2O3 catalysts using two coprecipitation methods is investigated to determine the important factors that control the synthesis of high activity catalysts for the oxidation of carbon monoxide at ambient temperature. In particular, the factors involved in the preparation of catalysts that are active without the need for a calcination step are evaluated. The two preparation methods differ in the manner in which the pH is controlled during the precipitation, either constant pH throughout or variable pH in which the pH is raised from an initial low value to a defined end point. Non-calcined Au/ZnO catalysts prepared using both methods are very sensitive to pH and ageing time, and catalysts prepared at a maximum pH = 5 with a short ageing time (ca. 0-3 h) exhibit high activity. Catalysts prepared at higher pH give lower activity. However, all catalysts require a short operation period during which the oxidation activity increases. In contrast, the calcined catalysts are not particularly sensitive to the preparation conditions. Non-calcined Au/Fe2O3 catalysts exhibit high activity when prepared at pH � 5. Calcined Au/Fe2O3 prepared using the controlled pH method retain high activity, whereas calcined catalysts prepared using the variable pH method are inactive. The study shows the immense sensitivity of the catalyst performance to the preparation methods. It is therefore not surprising that marked differences in the performance of supported Au catalysts for CO oxidation that are apparent in the extensive literature on this subject, particularly the effect of calcination, can be expected if the preparation parameters are not carefully controlled and reported. © 2007 Springer Science+Business Media, LLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call