Abstract

Recurrent genetic alterations that are frequently observed in some low-grade lymphomas, such as activated B cell subtype of diffuse large B-cell lymphoma (ABC-DLBCL) and mucosa-associated lymphoid tissue type lymphoma (MALT lymphoma) are usually associated with nuclear factor-κB (NF-κB) activation and confer resistance to therapy. In this study, we investigated the therapeutic efficacy and molecular mechanisms of AUY922, a novel Hsp90 inhibitor, in representative cell lines OCI-Ly3 (ABC-DLBCL) and MA-1 (a low-grade lymphoma cell line with t(14;18)/IgH-MALT1translocation) to explore its potential use in the treatment of refractory B-cell lymphoma. Our results showed that AUY922 effectively induced growth inhibition and apoptosis of OCI-Ly3 and MA-1 cells, which were accompanied by down-regulation of the expression levels of NF-κB and Bcl-2 family proteins, as well as molecules of multiple signaling pathways involving cell proliferation, growth and survival. The growth inhibitory effect of AUY922 was further confirmed in a mouse xenograft model. These findings indicate the potential use of AUY922 in B cell lymphomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call