Abstract
Auxin is a key regulator of many developmental processes in land plants and plays a strikingly similar role in the phylogenetically distant brown seaweeds. Emerging evidence shows that the PIN and PIN-like (PILS) auxin transporter families have preceded the evolution of the canonical auxin response pathway. A wide conservation of PILS-mediated auxin transport, together with reports of auxin function in unicellular algae, would suggest that auxin function preceded the advent of multicellularity. We find that PIN and PILS transporters form two eukaryotic subfamilies within a larger bacterial family. We argue that future functional characterisation of algal PIN and PILS transporters can shed light on a common origin of an auxin function followed by independent co-option in a multicellular context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.