Abstract
Auxins regulate many aspects of plant growth and development. In pea, three of the five TIR1/AFB members (PsTIR1a, PsTIR1b, and PsAFB2) have been implicated in auxin-related responses during fruit/seed development; however, the roles of PsAFB4 and PsAFB6 in these processes are unknown. Using yeast two-hybrid assays, we found that all five pea TIR1/AFB receptor proteins interacted with the pea AUX/IAAs PsIAA6 and/or PsIAA7 in an auxin-dependent manner, a requirement for functional auxin receptors. All five auxin receptors are expressed in young ovaries (pericarps) and rapidly developing seeds, with overlapping and unique developmental and hormone-regulated gene expression patterns. Pericarp PsAFB6 expression was suppressed by seeds and increased in response to deseeding, and exogenous hormone treatments suggest that seed-derived auxin and deseeding-induced ethylene are involved in these responses, respectively. Ethylene-induced elevation of pericarp PsAFB6 expression was associated with 4-Cl-IAA-specific reduction in ethylene responsiveness. In developing seeds, expression of PsTAR2 and PsYUC10 auxin biosynthesis genes was associated with high auxin levels in seed coat and cotyledon tissues, and PsAFB2 dominated the seed tissue transcript pool. Overall, auxin receptors had overlapping and unique developmental and hormone-regulated gene expression patterns during fruit/seed development, suggesting mediation of diverse responses to auxin, with PsAFB6 linking auxin and ethylene signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.