Abstract

Abstract In the last few years, a large number of auxin-binding proteins (ABPs) have been reported. Implicitly or explicitly, interest in such proteins resides in their possible role as auxin receptors. Many of these proteins are characterized as ABPs solely by their susceptibility to covalent photolabeling by tritiated azido-indole-3-acetic acid. In most cases where the labeled polypeptides have been identified, they turn out to have roles unconnected with primary auxin perception. It seems likely that auxin is binding to sites of catholic specificity in these cases and the influence of experimental protocols on the data is discussed. Because the term ABP implies that auxin binding affects the function of that protein, the importance of establishing further criteria before photolabeled peptides can be termed ABPs is emphasized. Applying such criteria, only a very few ABPs are currently of interest and only one of these, maize ABP1, has been characterized in detail. This protein is located primarily within the lumen of the endoplasmic reticulum, although an important fraction appears to function on the outside of the plasma membrane. The protein has a wide species distribution and it now seems highly probable that it is a genuine auxin receptor, the only protein for which such a function has yet been established. This conclusion is based on three independent lines of electrophysiological evidence, together with confocal imaging of cytoplasmic pH changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.